NCERT Solutions for Class 9 Maths Chapter 2 Polynomials (बहुपद) (Hindi Medium)
These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials
.
प्रश्नावली 2.1
Q1. निम्नलिखित व्यंजकों में कौन-कौन एक चर में बहुपद हैं और कौन-कौन नहीं हैं ? कारण के साथ उत्तर दीजिए :
(i) 4x2 – 3x + 7
(ii) y2 + √2
(iii)3√t + t√2
(iv) y +
(v) x10 + y3 + t50
हल:
(i) 4x2 – 3x + 7
यह एक चर में बहुपद है क्योंकि चर घात एक प्राकृत संख्या है |
(ii) y2 + √2
यह एक चर में बहुपद है क्योंकि चर घात एक प्राकृत संख्या है |
(iii)3√t + t√2
यह एक चर में बहुपद नहीं है क्योंकि चर का घात एक भिन्नात्मक संख्या है कोई प्राकृत संख्या नहीं है |
(iv) y +
यह एक चर में बहुपद नहीं है |
(v) x10 + y3 + t50
यह एक चर में बहुपद नहीं है | बल्कि यह तीन चर में बहुपद है |
Q2. निम्नलिखित में से प्रत्येक में x2 का गुणांक लिखिए |
(i) 2 + x2 + x
(ii) 2 – x2 + x3
iii) x2 + x
(iv) √2x −1
हल:
(i) 2 + x2 + x
x2 का गुणांक = 1
(ii) 2 – x2 + x3
x2 का गुणांक = –1
(iii) x2 + x
x2 का गुणांक =
(iv) √2x −1
x2 का गुणांक = 0 [क्योंकि यहाँ x2 नहीं है इसलिए इसका गुणांक शून्य होगा |]
Q3. 35 घात के द्विपद का और 100 घात के एकपदी का एक-एक उदाहरण दीजिए|
हल:
35 घात का एक द्विपदी
⇒ 2x35 + 5y
Note: द्विपदी का अर्थ दो पदों वाला व्यंजक जैसे – x + 5, 3a – 2b, 3t + 7 आदि.
100 घात का एक एकपदी
⇒ 3y100
Note: एकपदी का अर्थ एक पद वाला व्यंजक जैसे- 3x, 5t, y, 3xy आदि.
Q4. निम्नलिखित बहुपदों में से प्रत्येक के घात लिखिए:
(i) 5x3 + 4x2 + 7x
(ii) 4 – y2
(iii) 5t – √7
(iv) 3
हल:
(i) 5x3 + 4x2 + 7x
उत्तर: बहुपद का घात = 3
[नोट: बहुत का घात ज्ञात करने के लिए सभी घातों में से सबसे बड़ी घात को चुना जाता है |]
(ii) 4 – y2
उत्तर: बहुपद का घात = 2
(iii) 5t – √7
उत्तर: बहुपद का घात = 1
(iv) 3
उत्तर: बहुपद का घात = 0
[नोट: चूँकि यहाँ कोई चर नहीं है इसलिए बहुपद का घात शून्य (0) है |]
Q5. निम्नलिखित को रैखिक, द्विघात और त्रिघात बहुपद में वर्गीकृत कीजिए:
(i) x2 + x
(ii) x – x3
(iii) y + y2 + 4
(iv) 1 + x
(v) 3t
(vi) r2
(vii) 7x2
हल:
(i) x2 + x
उत्तर: द्विघात बहुपद
(ii) x – x3
उत्तर: त्रिघात बहुपद
(iii) y + y2 + 4
उत्तर: द्विघात बहुपद
(iv) 1 + x
उत्तर: रैखिक बहुपद
(v) 3t
उत्तर: रैखिक बहुपद
(vi) r2
उत्तर: द्विघात बहुपद
(vii) 7x2
उत्तर: त्रिघात बहुपद
प्रश्नावली 2.2
प्र1. निम्नलिखित पर बहुपद 5x – 4x2 + 3 के मान ज्ञात कीजिए :
(i) x = 0
(ii) x = –1
(iii) x = 2
हल:
(i) p(x) = 5x – 4x2 + 3
बहुपद p(x) में x = 0 रखने पर
P(0) = 5(0) – 4(0)2 + 3 = 0 – 0 + 3 = 3
अत: बहुपद का मान 3 है |
(ii) p(x) = 5x – 4x2 + 3
बहुपद p(x) में x = -1 रखने पर
P(1) = 5(-1) – 4(-1)2 + 3 = – 5 – 4 + 3 = – 9 + 3 = – 6
अत: बहुपद का मान – 6 है |
(iii) p(x) = 5x – 4x2 + 3
बहुपद p(x) में x = 2 रखने पर
P(2) = 5(2) – 4(2)2 + 3 = 10 -16 + 3 = – 3
अत: बहुपद का मान – 3 है |
Q2. निम्नलिखित बहुपदों में से प्रत्येक के लिए p(0), p(1) और p(2) ज्ञात कीजिए|
(i) p(y) = y2 – y + 1
(ii) p(t) = 2 + t + 2t 2 – t 3
(iii) p(x) = x3
(iv) p(x) = (x – 1) (x + 1)
हल:
(i) p(y) = y2 – y + 1
P(0) के लिए
P(0) = (0)2– 0 + 1 = 1
P(1) के लिए
P(1) = (1)2– 1 + 1
= 1 – 1 + 1 = 1
P(2) के लिए
P(2) = (2)2– 2 + 1
= 4 – 2 + 1 = 3
(ii) p(t) = 2 + t + 2t2– t3
P(0) के लिए
P(0) = 2 + 0 + 2(0)2– (0)3 = 2
P(1) के लिए
P(1) = 2 + 1 + 2(1)2 – (1)3 = 4
P(2) के लिए
P(2) = 2 + 2 + 2(2)2– (2)3
= 4 + 8 – 8 = 4
(iii) p(x) = x3
P(0) के लिए
P(0) = (0)3 = 0
P(1) के लिए
P(1) = (1)3 = 1
P(2) के लिए
P(2) = (2)3 = 8
(iv) P(x) = (x – 1) (x + 1)
P(0) के लिए
P(0) = (0 – 1) (0 + 1) = (-1) (1) = -1
P(1) के लिए
P(1) = (1 – 1) (1 + 1) = 0 (1) = 0
P(2) के लिए
P(2) = (2 – 1) (2 + 1) = 1(3) = 3
Q3. सत्यापित कीजिए कि दिखाए गए मान निम्नलिखित स्थितियों में संगत बहुपद के शुन्यक हैं :
हल:
(i) P(x) = 3x + 1
p(x) = 0, अत: दिया गया x का मान बहुपद का शुन्यक है |
(ii) P(x) = 5x – π
= 5 – π
∵ P(x) ≠ 0
∴ x के लिए दिया गया मान P(x) का शुन्यक नहीं है|
(iii) P(x) = x2 – 1
Q4. निम्नलिखित स्थितियों में से प्रत्येक स्थिति मेंबहुपद का शुन्यक ज्ञात कीजिए :
(i) P(x) = x + 5
(ii) P(x) = x – 5
(iii) Px) = 2x + 5
(iv) P(x) = 3x – 2
(v) P(x) = 3x
(vi) P(x) = ax, a ≠ 0
हल (i) :
(i) P(x) = x + 5
⇒ x + 5 = 0
⇒ x = – 5
बहुपद का शुन्यक – 5 हैं |
हल (ii) :
(ii) P(x) = x – 5
⇒ x – 5 = 0
⇒ x = 5
बहुपद का शुन्यक 5 है|
बहुपद का शुन्यक है |
(iv) P(x) = 3x – 2
3x – 2 = 0 ≠
बहुपद का शुन्यक है |
प्रश्नावली 2.3
Q1. x3 + 3x2 + 3x + 1 को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए :
(i) x + 1
(ii) x –
(iii) x
(iv) x + θ
(v) 5 + 2x
हल : (i) x3 + 3x2 + 3x + 1 को x + 1 से भाग देने पर
अत: भाग देने पर शेषफल 0 है|
हल : (iii) x3 + 3x2 + 3x + 1 को x से भाग देने पर
अत: भाग देने पर शेषफल 1 है|
हल : (iv) x3 + 3x2 + 3x + 1 को x + π से भाग देने पर
अत: भाग देने पर शेषफल – π3 + 3π2 – 3π + 1 है|
हल : (v) x3 + 3x2 + 3x + 1 को 5 + 2x से भाग देने पर
Q2. x3 – ax2 + 6x – a को x – a से भाग देने पर शेषफल ज्ञात कीजिए |
हल : p(x) = x3 – ax2 + 6x – a और g(x) = x – a है |
g(x) = x – a का शुन्यक
अत: x – a = 0
x = a
अत: शेषफल प्रमेय से
p(x) को x – a से भाग देने पर शेषफल प्रमेय द्वारा शेषफल p(a) प्राप्त होगा |
इसलिए, p(a) = (a)3 – a(a)2 + 6(a) – a
= a3 – a3 + 6a – a = 5a
अत: शेषफल 5a है |
प्रश्नावली 2.4
Q1. बताइए कि निम्नलिखित बहुपदों में से किस बहुपद का एक गुणनखंड x + 1 है|
(i) x3 + x2 + x + 1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 – x3 – (2 + √2)x + √2
हल : (i) p(x) = x3 + x2 + x + 1
माना g(x) = x + 1 = 0
⇒ x = – 1
अब गुणनखण्ड प्रमेय के प्रयोग से
p(x) = 0 यदि x = -1 p(x) का शुन्यक है |
अत: p(x) में x = -1 रखने पर
p(x) = x3 + x2 + x + 1
p(-1) = (-1)3 + (-1)2 + (-1) + 1
= – 1 + 1 – 1 + 1 = 0
चूँकि p(-1) = 0 इसलिए -1 p(x) का शुन्यक है और x + 1 p(x) का एक गुणनखंड है |
हल : (ii) p(x) = x4 + x3 + x2 + x + 1
माना g(x) = x + 1 = 0
⇒ x = – 1
अब गुणनखण्ड प्रमेय के प्रयोग से
p(x) = 0 यदि x = -1 p(x) का शुन्यक है |
अत: p(x) में x = -1 रखने पर
p(x) = x4 + x3 + x2 + x + 1
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
= 1 – 1 + 1 – 1 + 1 = 1
चूँकि p(-1) = 1 इसलिए -1 p(x) का शुन्यक नहीं है इसलिए गुणनखंड प्रमेय से x + 1 p(x) का एक गुणनखंड नहीं है |
हल : (iii) p(x) = x4 + 3x3 + 3x2 + x + 1
माना g(x) = x + 1 = 0
⇒ x = – 1
अब गुणनखण्ड प्रमेय के प्रयोग से
p(x) = 0 यदि x = -1 p(x) का शुन्यक है |
अत: p(x) में x = -1 रखने पर
p(x) = x4 + 3x3 + 3x2 + x + 1
p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
= 1 – 3 + 3 – 1 + 1 = 1
चूँकि p(-1) = 1 इसलिए -1 p(x) का शुन्यक नहीं है अत: गुणनखंड प्रमेय से x + 1 p(x) का एक गुणनखंड नहीं है |
माना g(x) = x + 1 = 0
⇒ x = – 1
अब गुणनखण्ड प्रमेय के प्रयोग से
p(x) = 0 यदि x = -1 p(x) का शुन्यक है |
अत: p(x) में x = -1 रखने पर
इसलिए -1 p(x) का शुन्यक नहीं है अत: गुणनखंड प्रमेय से x + 1 p(x) का एक गुणनखंड नहीं है |
Q2. गुणनखंड प्रमेय लागु करके बताइए कि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं :
(i) p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
(iii) p(x) = x3 – 4x2 + x + 6, g(x) = x – 3
हल : (i) p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
g(x) का शुन्यक
⇒ x + 1 = 0
अत: x = – 1
गुणनखंड प्रमेय लागु करने पर यदि p(-1) = 0, तो गुणनखंड है अथवा नहीं |
अत: p(x) = 2x3 + x2 – 2x – 1 दिया है |
अब, p(-1) = 2(-1)3 + (-1)2 – 2(-1) – 1
= 2 (-1) + 1 + 2 – 1 = – 2 + 1 + 2 – 1 = 0
चूँकि p(-1) = 0 है इसलिए -1 p(x) का एक शुन्यक है अत: गुणनखंड प्रमेय से x + 1 p(x) का एक गुणनखंड है |
हल : (ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
g(x) का शुन्यक
⇒ x + 2 = 0
अत: x = – 2
गुणनखंड प्रमेय लागु करने पर यदि p(-2) = 0, तो गुणनखंड है अथवा नहीं |
अत: p(x) = x3 + 3x2 + 3x + 1 दिया है |
अब, p(-2) = (-2)3 + 3(-2)2 + 3(-2) + 1
= -8 + 12 – 6 + 1 = 13 – 14 = – 1
चूँकि p(-2) = – 1 है इसलिए -2 p(x) का एक शुन्यक नहीं है अत: गुणनखंड प्रमेय से x + 2 p(x) का एक गुणनखंड भी नहीं है |
हल : (iii) p(x) = x3 – 4x2 + x + 6, g(x) = x – 3
g(x) का शुन्यक
⇒ x – 3 = 0
अत: x = 3
गुणनखंड प्रमेय लागु करने पर यदि p(3) = 0, तो गुणनखंड है अथवा नहीं |
अत: p(x) = x3 – 4x2 + x + 6 दिया है |
अब, p(3) = (3)3 – 4(3)2 + 3 + 6
= 27 – 36 + 3 + 6 = 36 – 36 = 0
चूँकि p(3) = 0 है इसलिए 3 p(x) का एक शुन्यक है अत: गुणनखंड प्रमेय से x – 3 p(x) का एक गुणनखंड है |
Q3. k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में (x – 1), p(x) का एक गुणनखंड हो :
(i) p(x) = x2 + x + k
(ii) p(x) = 2x2 + kx + √2
(iii) p(x) = kx2 – √2x + 1
(iv) p(x) = kx2 – 3x + k
हल : (i) p(x) = x2 + x + k
x – 1 p(x) का एक गुणनखंड है |
इसलिए x – 1 = 0 => x = 1
अत: 1 p(x) का शुन्यक है |
इसलिए p(1) = 0
अब p(x) = x2 + x + k = 0
p(1) = (1)2 + (1) + k = 0
1 + 1 + k = 0
2 + k = 0
k = – 2
हल : (ii) p(x) = 2x2 + kx + √2
चूँकि x – 1 p(x) का एक गुणनखंड है|
इसलिए x – 1 = 0
⇒ x = 1
अत: 1 p(x) का शुन्यक है |
इसलिए p(1) = 0
अब p(x) = 2x2 + kx + √2 = 0
p(1) = 2(1)2 + k(1) + √2 = 0
2 + k + √2 = 0
k = – 2 – √2
k = – (2 + √2)
हल : (iii) p(x) = kx2 – √2x + 1
चूँकि x – 1 p(x) का एक गुणनखंड है |
इसलिए x – 1 = 0 => x = 1
अत: 1 p(x) का शुन्यक है |
इसलिए p(1) = 0
अब p(x) = kx2 – √2x + 1 = 0
p(1) = k(1)2 – √2(1) + 1 = 0
k – √2 + 1 = 0
k = √2 – 1
हल : (iv) p(x) = kx2 – 3x + k
चूँकि x – 1 p(x) का एक गुणनखंड है |
इसलिए x – 1 = 0
⇒ x = 1
अत: 1 p(x) का शुन्यक है |
इसलिए p(1) = 0
अब p(x) = kx2 – 3x + k = 0
p(1) = k(1)2 – 3(1) + k = 0
k – 3 + k = 0
2k – 3 = 0
2k = 3
k = 3/2
Q4. गुणनखंड ज्ञात कीजिए :
(i) 12x2 – 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x – 6
(iv) 3x2 – x – 4
हल : (i) 12x2 – 7x + 1
⇒ 12x2 – 3x – 4x + 1
⇒ 3x(4x – 1) – 1(4x – 1)
⇒ (4x – 1) (3x – 1)
हल : (ii) 2x2 + 7x + 3
⇒ 2x2 + 6x + x + 3
⇒ 2x(x + 3) + 1(x + 3)
⇒ (x + 3) (2x + 1)
हल : (iii) 6x2 + 5x – 6
⇒ 6x2 + 9x – 4x – 6
⇒ 3x(2x + 3) – 2(2x + 3)
⇒ (2x + 3) (3x – 2)
हल : (iv) 3x2 – x – 4
⇒ 3x2 – 4x + 3x – 4
⇒ x(3x – 4) + 1(3x – 4)
⇒ (3x – 4) (x + 1)
Q5. गुणनखंड ज्ञात कीजिए :
(i) x3 – 2x2 – x + 2
(ii) x3 – 3x2 – 9x – 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 – 2y – 1
हल : (i) x3 – 2x2 – x + 2
बहुपद का संभावित शुन्यक हैं – ±1 और ±2
अत: बहुपद x3 – 2x2 – x + 2 में x = 1 रखने पर
p(x) = (1)3 – 2(1)2 – (1) + 2
= 1 – 2 – 1 + 2 = 0
चूँकि p(x) = 0 है, अत: 1 p(x) का शुन्यक है इसलिए x – 1 p(x) का एक गुणनखंड है |
पहली विधि : x – 1 से x3 – 2x2 – x + 2 में भाग देने पर
अत: x3 – 2x2 – x + 2 = (x – 1) (x2 – x – 2) [चूँकि p(x) = g(x) × q(x) ]
= (x – 1) (x2 – 2x + x – 2)
= (x – 1) [x(x – 2) + 1(x – 2)]
= (x – 1) (x – 2) (x + 1)
नोट: चूँकि यह त्रिघात बहुपद है इसलिए इसके तीन शुन्यक होंगे और तीन गुणनखंड होंगे |
दूसरी विधि : हम यहाँ पर x – 1 से भाग की लंबी प्रक्रिया न अपनाकर गुणनखंड विधि से अन्य गुणनखंड प्राप्त कर सकते हैं | चूँकि एक गुणनखंड x – 1 प्राप्त है|
x3 – 2x2 – x + 2 = x2(x -1) – x2 – x + 2
= x2(x -1) – x(x – 1) – 2x + 2
= x2(x -1) – x(x – 1) – 2(x – 1)
= (x – 1) (x2 – x – 2)
= (x – 1) (x2 – 2x + x – 2)
= (x – 1) [x(x – 2) + 1(x – 2)]
= (x – 1) (x – 2) (x + 1)
तीसरी विधि : हमें बहुपद का संभावित शुन्यक ±1 और ±2 ज्ञात है :
p(x) में x = 1, – 1, 2 और – 2 रखने पर
p(1) = 0 है | अत: x – 1 एक गुणनखंड है |
अब p(-1) = x3 – 2x2 – x + 2
= (-1)3 – 2(-1)2 -(-1) + 2
= -1 – 2 + 1 + 2 = 0
अत: p(-1) = 0 है अत: x + 1 एक गुणनखंड है |
अब p(2) = x3 – 2x2 – x + 2
= (2)3 – 2(2)2 -(2) + 2
= 8 – 8 – 2 + 2
= 0
p(2) = 0 है अत: x – 2 p(x) का एक गुणनखंड है |
अब p(-2) = x3 – 2x2 – x + 2
= (-2)3 – 2(-2)2 -(-2) + 2
= -8 – 8 + 2 + 2
= -16 + 4 = -12
p(-2) ≠ 0 अत: – 2 p(x) का शुन्यक नहीं है |
अत: x3 – 2x2 – x + 2 के गुणनखंड है (x – 1) (x + 1) (x – 2)
हल : (ii) x3 – 3x2 – 9x – 5
बहुपद का संभावित शुन्यक ± 1 और ±5 है |
बहुपद में x = -1 रखने पर
p(-1) = x3 – 3x2 – 9x – 5
= (-1)3 – 3(-1)2 – 9(-1) – 5
= -1 – 3 + 9 – 5 = 9 – 9 = 0
अत: x = -1 p(x) का शुन्यक है इसलिए x + 1 एक गुणनखंड है |
x3 – 3x2 – 9x – 5 = x2(x + 1) – 4x2 – 9x – 5
= x2(x + 1) – 4x(x + 1) – 5x – 5
= x2(x + 1) – 4x(x + 1) – 5(x + 1)
= (x + 1) (x2 – 4x – 5)
= (x + 1) (x2 – 5x + x – 5)
= (x + 1) [x(x – 5) +1(x – 5)]
= (x + 1) (x – 5) (x + 1)
अत: त्रिघात बहुपद के गुणनखंड (x + 1), (x – 5) और (x + 1) है |
हल : (iii) x3 + 13x2 + 32x + 20
बहुपद का संभावित शुन्यक ±1, ±2, ±4, ±5, ±10 और ±20 हैं |
बहुपद में x = – 1 रखने पर
p(x) = x3 + 13x2 + 32x + 20
= (-1)3 + 13(-1)2 + 32(-1) + 20
= -1 + 13 – 32 + 20 = 33 – 33 = 0
चूँकि p(-1) = 0 है अत: x + 1 बहुपद का एक गुणनखंड है |
x3 + 13x2 + 32x + 20 = x2(x + 1) + 12x2 + 32x + 20
= x2(x + 1) + 12x(x + 1) + 20x + 20
= x2(x + 1) + 12x(x + 1) + 20(x + 1)
= (x + 1) (x2 + 12x + 20)
= (x + 1) (x2 + 10x + 2x + 20)
= (x + 1) [(x(x + 10) + 2(x + 10)]
= (x + 1) (x + 10) (x + 2)
अत: त्रिघात बहुपद के गुणनखंड (x + 1), (x + 10) और (x + 2) है|
हल : (iv) 2y3 + y2 – 2y – 1
= y2(2y + 1) -1(2y + 1)
= (y2 – 1) (2y + 1)
= (y + 1) ( y – 1) (2y + 1)
बहुपद के गुणनखंड (y + 1), ( y – 1) और (2y + 1)हैं |
उपयोगी बीजगणितीय सर्वसमिकाएँ:
- (x + y)2 = x2 + 2xy + y2
- (x – y)2 = x2 – 2xy + y2
- x2 – y2 = (x + y) (x – y)
- (x + a) (x + b) = x2 + (a + b)x + ab
- (x + y)3 = x3 + 3x2y + 3xy2 + y3
- (x – y)3 = x3 – 3x2y + 3xy2 – y3
- x3 + y3 = (x + y) (x2 – xy + y2)
- x3 – y3 = (x – y) (x2 + xy + y2)
- (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
- x3 + y3 + z3 – 3xyz = ( x + y + z) (x2 + y2 + z2 – xy – yz – zx)
प्रश्नावली 2.5
Q1. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(v) (3 – 2x) (3 + 2x)
हल:
(i) (x + 4) (x + 10)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(x + 4) (x + 10) = x2 + (4 + 10)x + (4)(10)
= x2 + 14x + 40
(ii) (x + 8) (x – 10)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(x + 8) (x – 10) = x2 + [8 + (-10)]x + (8)(-10)
= x2 – 2x – 80
(iii) (3x + 4) (3x – 5)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(3x + 4) (3x – 5) = (3x)2 + [4 + (-5)]3x + (4)(-5)
= 9x2 – 3x – 20
सर्वसमिका (x + y) (x – y) = x2 – y2 का प्रयोग करने पर
(v) (3 – 2x) (3 + 2x)
सर्वसमिका (x + y) (x – y) = x2 – y2 का प्रयोग करने पर
(3 – 2x) (3 + 2x) = (3)2 – (2x)2
= 9 – 4x2
Q2. सीधे गुना किये बिना निम्नलिखित गुणनफलों के मान ज्ञात कीजिए :
(i) 103 × 107
(ii) 95 × 96
(iii) 104 × 96
हल:
(i) 103 × 107 = (100 + 3) (100 + 7)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(100 + 3) (100 + 7) = (100)2 + (3 + 7)100 + 3×7
=10000 + 1000 + 21 = 11021
(ii) 95 × 96 = (90 + 5) (90 + 6)
सर्वसमिका (x + a) (x + b) = x2 + (a + b)x + ab का प्रयोग करने पर
(90 + 5) (90 + 6) = (90)2 + (5 + 6)90 + 5×6
= 8100 + 990 + 30 = 9120
(iii) 104 × 96 = (100 + 4) (100 – 4)
सर्वसमिका (x + y) (x – y) = x2 – y2 का प्रयोग करने पर
(100)2 – (4)2
= 10000 – 16 = 9984
3. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित का गुणनखंड कीजिए:
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y + 1
हल:
(i) 9x2 + 6xy + y2
= (3x)2 + 2.3x.y + (y)2 [ ∵ x2 + 2xy + y2 = (x + y)2]
∴ = (3x + y)2
= (3x + y) (3x + y)
(ii) 4y2 – 4y + 1
= (2y)2 – 2.2y.1 + (1)2 [ ∵ x2 – 2xy + y2 = (x – y)2]
∴ = (2y – 1)2
= (2y – 1) (2y – 1)
[ ∵ x2 – y2 = (x + y) (x – y) ]
Q4. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित में से प्रत्येक का प्रसार कीजिए:
(i) (x + 2y + 4z)2
(ii) (2x – y + z)2
(iii) (–2x + 3y + 2z)2
(iv) (3a – 7b – c)2
(v) (–2x + 5y – 3z)2
हल:
(i) (x + 2y + 4z)2
यहाँ माना कि a = x, b = 2y, c = 4z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर
∴ (x + 2y + 4z)2 = (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx
(ii) (2x – y + z)2
यहाँ माना कि a = 2x, b = – y, c = z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर
∴ (2x – y + z)2 = (2x)2 + (- y)2 + (z)2 + 2(2x)(- y) + 2(- y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4zx
(iii) (–2x + 3y + 2z)2
यहाँ माना कि a = – 2x, b = 3y, c = 2z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर
∴ (-2x + 3y + 2z)2
= (-2x)2 + (3y)2 + (2z)2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8zx
(iv) (3a – 7b – c)2
यहाँ माना कि x = 3a, y = -7b, z = -c और x, y तथा z का मान सर्वसमिका
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zxमें रखने पर
∴ (3a – 7b – c)2
= (3a)2 + (-7b)2 + (-c)2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac
(v) (-2x + 5y – 3z)2
यहाँ माना कि a = – 2x, b = 5y, c = -3z और a, b तथा c का मान सर्वसमिका
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca में रखने पर
∴ (-2x + 5y – 3z)2
= (-2x)2 + (5y)2 + (-3z)2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx
Q5. गुणनखंड कीजिए:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
हल:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (4z)2 + 2(2x)(3y) + 2(3y)(4z) + 2(4z)(2x)
[∵ a2 + b2 + c2 + 2ab + 2bc + 2ca = (a + b + c)2 ]
= (2x + 3y + 4z)2
= (2x + 3y + 4z) (2x + 3y + 4z)
Q6. निम्नलिखित घनों को विस्तारित रूप में लिखिए :
(i) (2x + 1)3
(ii) (2a – 3b)3
हल:
(i) (2x + 1)3
[सर्वसमिका के प्रयोग से (a + b)3 = a3 + 3a2b + 3ab2 + b3]
(2x + 1)3 = (2x)3 + 3 (2x)2 (1) + 3 (2x) (1)2 + (1)3
= 8x3 + 12x2 + 6x + 1
(ii) (2a – 3b)3
[सर्वसमिका के प्रयोग से (x – y)3 = x3 – 3x2y + 3xy2 – y3]
(2a – 3b)3 = (2a)3 – 3 (2a)2 (3b) + 3(2a) (3b)2 – (3b)3
= 8a3 – 36a2b + 54ab2 – 27b3
[सर्वसमिका के प्रयोग से (a + b)3 = a3 + 3a2b + 3ab2 + b3]
[सर्वसमिका के प्रयोग से (a – b)3 = a3 – 3a2b + 3ab2 – b3]
Q7. उपयुक्त सर्वसमिका का प्रयोग कर निम्नलिखित का मान ज्ञात कीजिए :
(i) (99)3
(ii) (102)3
(iii) (998)3
हल :
(i) (99)3
= (100 – 1)3
[सर्वसमिका के प्रयोग से (a – b)3 = a3 – 3a2b + 3ab2 – b3]
(100 – 1)3 = (100)3 – 3(100)2(1) + 3(100)(1)2 – (1)3
= 1000000 – 30000 + 300 – 1 = 1000300 – 30001 = 970299
(ii) (102)3
= (100 + 2)3
[सर्वसमिका के प्रयोग से (a + b)3 = a3 + 3a2b + 3ab2 + b3]
(100 + 2)3 = (100)3 + 3 (100)2 (2)+ 3 (100) (2)2 + (2)3
= 1000000 + 60000 + 1200 + 8 = 1061208
(iii) (998)3
= (1000 – 2)3
[सर्वसमिका के प्रयोग से (a – b)3 = a3 – 3a2b + 3ab2 – b3]
(1000 – 2)3 = (1000)3 – 3 (1000)2 (2)+ 3(1000) (2)2 – (2)3
= 1000000000 – 6000000 + 12000 – 8
= 1000012000 – 6000008
= 994011992
Q8. निम्नलिखित का गुणनखंड कीजिए :
(i) 8a3 + b3 + 12a2b + 6ab2
(ii) 8a2 – b2 – 12a2b + 6ab2
(iii) 27 – 125a3 – 135a + 225a2
(iv) 64a3 – 27b3 – 144a2b + 108ab2
हल:
(i) 8a3 + b3 + 12a2b + 6ab2
= (2a)3 +(b)3 + 3(2a)2(b) + 3(2a)(b)2
[सर्वसमिका के प्रयोग से x3 + y3 + 3x2y + 3xy2 = (x + y)3 ]
= (2a)3 +(b)3 + 3(2a)2(b) + 3(2a)(b)2 = (2a + b)3
= (2a + b)(2a + b)(2a + b)
(ii) 8a2 – b2 – 12a2b + 6ab2
= (2a)3 – (b)3 – 3(2a)2(b) + 3(2a)(b)2
[सर्वसमिका के प्रयोग से x3 – y3 – 3x2y + 3xy2 = (x – y)3 ]
= (2a)3 – (b)3 – 3(2a)2(b) + 3(2a)(b)2 = (2a – b)3
= (2a – b)(2a – b)(2a – b)
(iii) 27 – 125a3 – 135a + 225a2
= (3)3 – (5a)3 – 3(3)2(5a) + 3(3)(5a)2
[सर्वसमिका के प्रयोग से x3 – y3 – 3x2y + 3xy2 = (x – y)3 ]
= (3)3 – (5a)3 – 3(3)2(5a) + 3(3)(5a)2= (3 – 5a)3
= (3 – 5a)(3 – 5a)(3 – 5a)
(iv) 64a3 – 27b3 – 144a2b + 108ab2
= (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2
[सर्वसमिका के प्रयोग से x3 – y3 – 3x2y + 3xy2 = (x – y)3 ]
= (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2 = (4a – 3b)3
= (4a – 3b)(4a – 3b)(4a – 3b)
[सर्वसमिका के प्रयोग से x3 – y3 – 3x2y + 3xy2 = (x – y)3 ]
Q9. सत्यापित कीजिए :
(i) x3 + y3 = (x + y) (x2 – xy + y2)
हल :
RHS = (x + y) (x2 – xy + y2)
= x(x2 – xy + y2) + y (x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3
∵ LHS = RHS सत्यापित
(ii) x3 – y3 = (x – y) (x2 + xy + y2)
हल :
RHS = (x – y) (x2 + xy + y2)
x(x2 + xy + y2) – y (x2 + xy + y2)
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3
∵ LHS = RHS सत्यापित |
Q10. निम्नलिखित में से प्रत्येक का गुणनखंड ज्ञात कीजिए:
(i) 27y3 + 125z3
(ii) 64m3 – 343n3
हल :
(i) 27y3 + 125z3
= (3y)3 + (5z)3
[सर्वसमिका के प्रयोग से x3 + y3 = (x + y) (x2 – xy + y2) ]
(3y)3 + (5z)3 = (3y + 5y) [(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5y) (9y2 – 15yz + 25z2)
(ii) 64m3 – 343n3
हल :
(ii) 64m3 – 343n3
= (4m)3 – (7n)3
[सर्वसमिका के प्रयोग से x3 – y3 = (x – y) (x2 + xy + y2) ]
(4m)3 – (7n)3 = (4m – 7n) [(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n) (16m2 + 28mn + 49n2)
Q11. गुणनखण्ड ज्ञात कीजिए : 27x3 + y3 + z3 – 9xyz
हल :
= (3x)3 + (y)3 + (z)3 – 9xyz
∵ x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
सर्वसमिका के प्रयोग से :
= (3x + y + z) ((3x)2 + (y)2 + (z)2 – (3x)(y) – (y)(z) – (z)(3x))
= (3x + y + z) (9x2 + y2 + z2 – 3xy – yz – 3zx)
Q12. सत्यापित कीजिए:
x3 + y3 + z3 – 3xyz = (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2]
हल :
LHS = (x + y + z) [x2 – 2xy + y2 + y2 – 2yz + z2 + z2 – 2xz + x2]
= (x + y + z) (2x2 + 2y2 + 2z2 – 2xy – 2yz – 2xz)
= × 2(x + y + z) (x2 + y2 + z2 – xy – yz – xz)
= (x + y + z)(x2 + y2 + z2 – xy – yz – xz)
= x3 + y3 + z3 – 3xyz [सर्वसमिका के प्रयोग से ]
LHS = RHS
Q13. यदि x + y + z = 0 हो, तो दिखाइए कि x3 + y3 + z3 = 3xyz है |
हल : x + y + z = 0 दिया है |
x3 + y3 + z3 – 3xyz = ( x + y + z) (x2 + y2 + z2 – xy – yz – zx)
= (0) (x2 + y2 + z2 – xy – yz – zx) = 0
अत: x3 + y3 + z3 – 3xyz = 0
या x3 + y3 + z3 = 3xyz सत्यापित
Q14. वास्तव में घनों का परिकलन किए बिना निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए :
(i) (-12)3 + (7)3 + (5)3
(ii) (28)3 + (-15)3 + (-13)3
हल : (i) (-12)3 + (7)3 + (5)3
प्रश्न 13. में हमने एक सर्वसमीका प्राप्त किया था कि यदि x + y + z = 0 हो तो
x3 + y3 + z3 = 3xyz है |
अत: इस सर्वसमिका में x = -12, y = 7 और z = 5 रखने पर
चूँकि – 12 + 7 + 5 => -12 + 12 = 0
अत: x + y + z = 0 है |
अब, x3 + y3 + z3 = 3xyz [x, y, और z का मान रखने पर ]
=> (-12)3 + (7)3 + (5)3 = 3 × (-12) × 7 × 5
= – 1260
हल : (ii) (28)3 + (–15)3 + (–13)3
28 + (-15) + (-13) = 28 – 28 = 0
चूँकि x + y + z = 0 है |
इसलिए x3 + y3 + z3 = 3xyz
अब, (28)3 + (–15)3 + (–13)3 = 3 × 28 × (-15) × (-13)
= 133380
Q15. नीचे दिए गए आयातों, जिनमें उनके क्षेत्रफल दिए गए है, में से प्रत्येक की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिये |
(i) क्षेत्रफल : 25a2 – 35a + 12
(ii) क्षेत्रफल : 35y2 + 13y – 12
हल : (i) क्षेत्रफल : 25a2 – 35a + 12
क्षेत्रफल = लंबाई × चौड़ाई
अत: 25a2 – 35a + 12 के दो गुणनखंड होंगे जिसमें एक लंबाई होगा और दूसरा चौड़ाई होगा |
गुणनखंड करने पर :
25a2 – 35a + 12 = 25a2 + 15a + 20a + 12
= 5a(5a + 3) + 4(5a + 3)
= (5a + 3) (5a + 4)
चूँकि (5a + 3) < (5a + 4) है |
अत: लंबाई = 5a + 4 और चौड़ाई = 5a + 3
हल : (ii) क्षेत्रफल : 35y2 + 13y – 12
गुणनखंड करने पर
35y2 + 13y – 12 = 35y2 + 28y – 15y – 12
= 7y(5y + 4) – 3(5y + 4)
= (5y + 4) (7y – 3)
अत: लंबाई = 5y + 4 और चौड़ाई = 7y – 3
Q16. घनाभों (cuboids), जिनके आयतन नीचे दिए गए हैं कि, विमाओं के लिए संभव व्यंजक क्या हैं ?
(i) आयतन : 3x3 – 12x
(ii) आयतन : 12ky2 + 8ky – 20k
हल : (i) आयतन : 3x3 – 12x
गुणनखंड करने पर
आयतन = 3x3 – 12x = 3x(x – 4)
चूँकि आयतन = L × B × H
अत: L = 3, B = x और H = x – 4
हल : (ii) आयतन : 12ky2 + 8ky – 20k
आयतन = 12ky2 + 8ky – 20k
= 4k (3y2 + 2y – 5)
= 4k (3y2 + 5y – 3y – 5)
= 4k [y (3y + 5) – 1(3y + 5)]
= 4k (3y + 5) (y – 1)
चूँकि आयतन = L × B × H
अत: L = 4k, B = (3y + 5) और H = (y – 1)
One Response
श्रीमान
प्रश्न संख्या 16 में
(i) गलत है
इसे सुधारने की कृपा करें।
धन्यवाद