NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry (युक्लिड के ज्यामिति का परिचय) (Hindi Medium)

Created with Sketch.

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry (युक्लिड के ज्यामिति का परिचय) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry.

प्रश्नावली : 5.1

Q1. निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं? अपने उत्तरों
के लिए कारण दीजिए।
(i) एक बिंदु से होकर वेफवल एक ही रेखा खींची जा सकती है।
(ii) दो भिन्न बिंदुओं से होकर जाने वाली असंख्य रेखाएँ हैं।
(iii) एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।
(iv) यदि दो वृत्त बराबर हैं, तो उनकी त्रिज्याएँ बराबर होती हैं।
(v) आकृति 5.9 में, यदि AB = PQ और PQ = XY, तो AB = XY होगा |
NCERT Solutions For Class 9 Maths Hindi Medium 5.1 1
Solution :
(i) असत्य, एक बिंदु से होकर अनंत रेखाएं खिंची जा सकती है |
(ii) असत्य, दो भिन्न बिन्दुओ से होकर केवल एक रेखा खिंची जा सकती है |
(iii) सत्य, एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।
(iv) सत्य, बराबर त्रिज्याओं से बराबर वृत्त खिंचा जाता है |
(v) सत्य, सभी तीनों रेखाएँ एक दुसरे के बराबर हैं |

Q2. निम्नलिखित पदों में से प्रत्येक की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें
परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
(i) समांतर रेखाएँ
(ii) लम्ब रेखाएँ
(iii) रेखाखंड
(iv) वृत्त की त्रिज्या
(v) वर्ग
Solution :
(i) समांतर रेखाएँ : वे दो रेखाएँ समान्तर कहलाती है जो एक दुसरे से कभी नहीं मिलती है और उनकी बीच की दुरी सदैव सामान रहता है |
(ii) लम्ब रेखाएँ : दो रेखाएँ एक दुसरे पर इस प्रकार खड़ी रहती है कि उनके बीच का कोण एक समकोण होता है तो ऐसे रेखाओं को लम्ब रेखाएँ कहते हैं |
(iii) रेखाखंड : जिस रेखा के दो अंत बिंदु हो उसे रेखाखंड कहते है |
(iv) वृत्त की त्रिज्या : वृत्त के केंद्र और परिधि के बीच की दुरी को त्रिज्या कहते हैं |
(v) वर्ग : वह बंद आकृति जिसके सभी भुजाएँ बराबर हो |

Q3. नीचे दी हुई दो अभिधरणाओं पर विचार कीजिए:
(i) दो भिन्न बिंदु A और B दिए रहने पर, एक तीसरा बिंदु C ऐसा विद्यमान है जो A और B के बीच स्थित होता है।
(ii) यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं।
Solution : 
हाँ, यह अभिधारणा में दो अपरिभाषित तथ्य है जिसमें रेखाएँ और बिंदु है |
हाँ, यह अभिधारणा असंगत है क्योंकि ये दो भिन्न स्थितियों से संबंधित है और इनमें से कोई भी युक्लिड की अभिधारणा से का अनुसरण नहीं करता है |

Q4. यदि दो बिन्दुओं A और B के बीच एक बिंदु C ऐसा स्थित है कि AC = CD है, तो सिद्ध कीजिए कि AC = ½AB है | एक आकृति खींच कर इसे स्पष्ट कीजिए|
Solution :
दिया है : AC = BC
Maths NCERT Solutions Class 9 Hindi Medium 5.1 4
सिद्ध करना है : AC = AB
प्रमाण : AC +BC = AB
अथवा  AC + AC = AB
अथवा       2AC = AB
Class 9 Maths NCERT Solutions Hindi Medium 5.1 4.1

Q5. प्रश्न 4 में, बिंदु C रेखाखंड AB का एक मध्यबिंदु कहलाता है | सिद्ध कीजिए कि एक रेखाखंड का एक और केवल एक ही मध्य-बिंदु होता है|
Solution :
C रेखाखंड AB का मध्य-बिंदु है |
इसलिए,  AC = BC
माना, C’ रेखाखंड AB पर है जो AB का मध्य-बिंदु है |
इसलिए, AC` = BC`
NCERT Maths Solutions For Class 9 Hindi Medium 5.1 5
समीकरण (1) और (2) से
AC`= AC
अथवा  C`= C
इसलिए, C और C` एक ही बिंदु है अर्थात संपाती है |
अत: एक रेखाखंड के एक ही मध्य-बिंदु होते हैं |

Q6. आकृति 5.10 में, यदि AC = BD है तो सिद्ध कीजिए कि AB = CD है | 
NCERT Class 9 Maths Hindi Medium Solutions 5.1 6
Solution:
दिया है : AC = BD
सिद्ध करना  है : AB = CD
प्रमाण :  AC = BD   ……… (1)
समीकरण (1) में से BC घटाने पर;
AC – BC = BD – BC
AB = CD

Q7. यूक्लिड की अभिगृहीतों की सूची में दिया हुआ अभिगृहीत 5 एक सर्वव्यापी सत्य क्यों माना
जाता है? (ध्यान दीजिए कि यह प्रश्न पाँचवीं अभिधरणा से संबंधित नहीं है।)

Solution :
क्योंकि पूर्ण का कोई भी भाग क्यों न हो, वह अस्तित्व में पूर्ण से आया होगा तब इसके लिए प्रमाण देने की आवश्यकता ही नहीं है कि पूर्ण अपने भाग से बड़ा होगा। जैसे कि इसका प्रमाण देने की आवश्यकता नहीं होती कि पिता पुत्र से आयु में बड़ा होता है।
अत: यह “पूर्ण अपने भाग से बड़ा होता है यह सर्वव्यापी सत्य है।

प्रश्नावली 5.2

Q1. आप यूक्लिड की पाँचवीं अभिधारणा को किस प्रकार लिखेंगे ताकि वह सरलता से समझी जा सके।
Solution :
यूक्लिड की पाँचवीं अभिधारणा
यदि l और m दो रेखाओं को तीसरी रेखा n काटती है और रेखा n के एक ही ओर बने दोनों अन्तः कोणों का योग दो समकोण से कम हो तो l और m बढ़ाने पर उसी ओर मिलेंगी जिस ओर के कोणों का योग 2 समकोण से कम होगा। अर्थात् दो भिन्न प्रतिच्छेदित रेखाएँ समान रेखा के समान्तर नहीं हो सकती हैं।
NCERT Maths Class 9 Hindi Medium Solutions 5.2 1

Q2. क्या यूक्लिड की पाँचवीं अभिधारणा से समान्तर रेखाओं के अस्तित्व का औचित्य निर्धारित होता है? स्पष्ट कीजिए।
Solution :
यूक्लिड की पाँचवीं अभिधारणा से समान्तर रेखाओं का अस्तित्व
यदि l और m दो रेखाओं को तीसरी रेखा n काटती है और n के एक ही ओर बने अन्त:कोण ∠1 वे ∠2 का योग 2 समकोण हो तो l और m, रेखा n के एक ओर नहीं मिलेंगी। जब ∠1 + ∠2 = 180° है तो n रेखा के दूसरी ओर बने अन्त:कोणों ∠3 व ∠4 का योग भी 180°होगा तब रेखाएँ l और m, रेखा n के दूसरी ओर भी नहीं मिलेंगी। अतः l औरा m कभी नहीं मिलेंगी, तब l और m रेखाएँ समान्तर होंगी।

Leave a Reply

Your email address will not be published. Required fields are marked *

This is a free online math calculator together with a variety of other free math calculatorsMaths calculators
+